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Tibiofemoral Kinematics During Compressive
Loading of the ACL-Intact and ACL-Sectioned Knee

Roles of Tibial Slope, Medial Eminence Volume, and Anterior Laxity
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Background: Tibial geometry and knee laxity have been identified as risk factors for both noncontact anterior cruciate
ligament (ACL) rupture and instability in the setting of ACL insufficiency via clinical studies; yet, their biomechanical
relationships with tibiofemoral kinematics during compressive loading are less well understood. The purpose of this study
was to identify the relative contributions of sagittal tibial slope, medial tibial eminence volume, and anterior knee laxity to
tibiofemoral kinematics with axial compression in both ACL-intact and ACL-sectioned cadaveric knees.

Methods: Computed tomography (CT) data were collected from 13 human cadaveric knees (mean donor age, 45 ± 11
years; 8 male). Validated algorithms were used to calculate the sagittal slope of the medial and of the lateral tibial plateau
as well as volume of the medial tibial eminence. Specimens were then mounted to a robotic manipulator. For both intact
and ACL-sectioned conditions, the robot compressed the knee from 10 to 300 N at 15� of flexion; the net anterior tibial
translation of the medial and lateral compartments and internal tibial rotation were recorded. Simple and multiple linear
regressions were performed to identify correlations between kinematic outcomes and (1) osseous geometric parameters
and (2) anterior laxity during a simulated Lachman test.

Results: In ACL-intact knees, anterior tibial translation of each compartment was positively correlated with the corre-
sponding sagittal slope, and internal tibial rotation was positively correlated with the lateral sagittal slope and the sagittal
slope differential (p £ 0.044). In ACL-sectioned knees, anterior tibial translation of the medial compartment was positively
associated with medial sagittal slope as well as a combination of medial tibial eminence volume and anterior laxity;
internal tibial rotation was inversely correlated with anterior knee laxity (p < 0.05).

Conclusions: Under compressive loading, sagittal slope of the medial and of the lateral tibial plateau was predictive of
kinematics with the ACL intact, while medial tibial eminence volume and anterior laxity were predictive of kinematics with
the ACL sectioned.

Clinical Relevance: The relationships between tibial osseous morphology, anterior laxity, and knee kinematics under
compression may help explain heightened risk of ACL injury and might predict knee instability after ACL rupture.

R
upture of the anterior cruciate ligament (ACL) fre-
quently occurs in the noncontact setting during athletic
activities, such as cutting or landing while axially loading

the knee near full extension1-3. After ACL rupture, instability may
expose the knee to large rotations and translations4,5, resulting in
compromised function, cartilage damage, andmeniscal injury6-9.
Previous work identified anatomical factors that increase the risk

of ACL rupture and, in the setting of ACL insufficiency, cause
episodes of instability and giving-way. For example, increased
posterior-inferior directed slope of the lateral tibial plateau10-15,
decreased tibial eminence volume16,17, and increased anterior
laxity heighten the risk of noncontact ACL rupture18-21. Sim-
ilarly, in the ACL-deficient knee, increased tibial slope has
been associated with greater anterior tibial translation22-27.

Disclosure: The authors indicated that no external funding was received for any aspect of this work. The Disclosure of Potential Conflicts of Interest
forms are provided with the online version of the article (http://links.lww.com/JBJS/F289).

1085

COPYRIGHT � 2019 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED

J Bone Joint Surg Am. 2019;101:1085-92 d http://dx.doi.org/10.2106/JBJS.18.00868

http://jbjs.org
http://links.lww.com/JBJS/F289


Despite the importance of these anatomical factors in
predicting the risk of ACL injury, their contributions to tibio-
femoral kinematics in response to compressive loading is not
well understood10,19,28. Specifically, tibiofemoral compression is
known to increase both anterior tibial translation and ACL load
to the point of rupture29-31. No studies that we are aware of,
however, have linked tibial morphology and anterior laxity to
kinematic variations in anterior tibial translation of both the
medial and lateral tibial compartments as well as tibial rotation
in the axial plane19,24,32,33. In addition, accounting for the slope of
each tibial compartment may better predict tibiofemoral kin-
ematics because these slopes are unrelated and may indepen-
dently influence knee motions34,35. Finally, accounting for these
additional kinematic and morphological features may help
explain why patients with steep lateral tibial slope and lateral-
to-medial slope asymmetry see higher rates of concomitant
posterolateral meniscal root tears with ACL rupture15.

Altogether, identifying relationships between tibiofemo-
ral anatomy and kinematics during compressive loading would
quantify the contributions of anatomical risk factors to large
tibiofemoral translations and rotations, which may predispose
the ACL and menisci to injury. Therefore, we used a cadaveric
model to determine the relationships between tibiofemoral
kinematics during compressive loading and the following
anatomical and laxity features of the knee in the ACL-intact
and ACL-sectioned states: (1) sagittal slope of the medial tibial
plateau, (2) sagittal slope of the lateral tibial plateau, (3) vol-
ume of the medial tibial eminence, and (4) anterior knee laxity.

Materials and Methods

Computed tomography (CT) (Biograph mCT; Siemens)
scans with 0.6-mm slice thickness and 0.5·0.5-mm in-plane

pixel dimensions (settings: 140 kV, 140 mA) were obtained from
13 fresh-frozen, unpaired human cadaveric knees (mean donor
age [and standard deviation], 45 ± 11 years; 8 male). Three-
dimensional (3D) reconstructions of the CT data were used to
measure sagittal slope of the medial and lateral tibial plateaus as
well as themedial tibial eminence volume (Fig. 1)16,36-38. The sagittal
slope measurements for the medial and lateral tibial plateaus were
calculated using a previously published, validated algorithm39, and
the slope differential (lateral slope minus medial slope) was cal-
culated because of its potential role in internal tibial rotation38.
We isolated the volume of the anteromedial aspect of the medial
tibial eminence using an objective algorithm (see Appendix)16,25,34

adapted from the literature because this portion of the tibial
eminence contacts the femoral notch in the ACL-sectioned knee40

and, therefore, may impact tibiofemoral kinematics.
Specimens were sectioned at the midshaft of the tibial,

fibular, and femoral diaphyses; all soft tissues surrounding
the joint were left intact. Specimens with degeneration or
abnormalities of the ligamentous, cartilaginous, meniscal, or
osseous tissues were excluded. The fibula was fixed to the
tibia using a carpenter screw 5 cm distal to the joint line. The
tibial and femoral diaphyses were then potted in bonding
cement (Bondo; 3M).

Potted specimens were then mounted to a 6-degrees-of-
freedom (DOF) robot (ZX165U; Kawasaki) instrumented with a

Fig. 1

Objective algorithmswere used to quantify features of tibial geometry. We obtained CT scans of each knee, segmented the tibia (highlighted in light blue), and

performed 3D reconstructions. Then, from the 3D reconstructions, we used objective algorithms to quantify (1) the sagittal slope of both themedial and lateral

tibial plateaus (lateral plateau slope shown in green, u) and (2) the volume of the anteromedial aspect of the medial tibial eminence (highlighted in yellow).
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universal force-moment sensor (Theta; ATI Industrial Auto-
mation). The femur was rigidly fixed to the ground via a ped-
estal, and the tibia was aligned in full extension and then
mounted to a fixture attached to the end effector of the robot.
Specimens were wrapped in saline solution-soaked gauze to
preserve the soft tissues throughout testing41.

After mounting the specimen to the robot, anatomical
landmarks were identified using a 3D digitizer accurate to
0.32 mm (MicroScribe G2X; Solution Technologies). These
landmarks included the femoral epicondyles, the distal part
of the tibia approximately 25 cm distal to the joint line,
the fibular insertion of the lateral collateral ligament (LCL),

TABLE I Correlations Between Kinematics and Anatomical Factors in ACL-Intact Knees*

Kinematics Anatomical Factor b 95% CI Adj. R2 P Value

Medial compartment ATT Medial sagittal slope 0.82 0.28, 1.37 0.45 0.007

Lateral sagittal slope 20.09 21.25, 1.07 20.09 0.812

Sagittal slope differential 20.53 21.01, 20.05 0.29 0.033

Medial tibial eminence volume 20.01 20.03, 0.01 0.07 0.194

Anterior laxity 0.67 21.07, 2.41 20.02 0.426

Lateral compartment ATT Medial sagittal slope 20.37 21.68, 0.94 20.05 0.549

Lateral sagittal slope 1.47 0.42, 2.51 0.41 0.011

Sagittal slope differential 0.98 0.19, 1.77 0.34 0.022

Medial tibial eminence volume 20.01 20.04, 0.02 20.04 0.485

Anterior laxity 21.16 24.15, 1.83 20.02 0.416

Internal tibial rotation Medial sagittal slope 20.93 22.14, 0.28 0.13 0.122

Lateral sagittal slope 1.25 0.05, 2.45 0.26 0.044

Sagittal slope differential 1.19 0.50, 1.88 0.53 0.003

Medial tibial eminence volume 0.00 20.04, 0.04 20.09 0.969

Anterior laxity 21.33 24.37, 1.71 20.01 0.360

*ACL= anterior cruciate ligament, and ATT = anterior tibial translation.

Fig. 2

Simple linear regressions relating sagittal slope of the medial and lateral tibial compartments to their respective compartmental translations (trans.).

Relationships are shown for ACL-intact and ACL-sectioned knees. Kinematics reflect changes between a minimally loaded state (10 N) and 300 N

compression at 15� of flexion. The 95% confidence intervals of the regression coefficients (b) are in parentheses. P < 0.05 is significant.
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and the midsubstance of the superficial medial collateral
ligament (MCL) approximately 2.5 cm distal to the joint
line. Using these anatomical landmarks, a knee coordi-
nate system was defined, as previously described42,43. The
long axis of the tibia defined internal and external rota-
tion, the femoral epicondyles defined the flexion axis, and
their common perpendicular defined the anteroposterior
direction.

The knee was then flexed from 0� to 90� in 1� increments
with 10 N of compression; forces and torques in the re-
maining directions were minimized. Algorithms were con-
sidered to have converged when resultant forces and torques
differed by <5 N and <0.4 Nm, respectively, compared with
the target loads42. To standardize the initial position for
compressive loading, each knee was set to the respective
posterior and external rotational extremes of its anteropos-
terior and internal-external rotational neutral zones44. Then,
specimens were preconditioned with anterior and rotational
loads, as previously described42.

Axial compression was applied at 15� of flexion, an
angle at which the knee experiences compressive loads during
daily activities, such as walking45. The remaining DOF were

not loaded and were left unconstrained. Compression was
directed along the tibial long axis and incrementally increased
from 10 to 300 N in the following steps: 10, 50, 100, 200, and
300 N. This magnitude of compression was chosen on the
basis of a study by Liu-Barba et al., in which knees were
compressed to 1,600 N and the greatest changes in anterior
tibial translation and internal tibial rotation per unit of
applied compression occurred from an unloaded state to 300
N46. Resulting translations and rotations were recorded with
the ACL intact and after it was sectioned. Anterior tibial
translations of the medial and lateral compartments were
calculated by projecting the points digitized on the superficial
MCL and the fibular insertion of the LCL, respectively, onto
the anteroposterior axis25.

The robot simulated a Lachman test to quantify anterior
laxity for both ACL conditions47,48. Specifically, 134 N of ante-
rior force was applied at the bisection of the femoral epicon-
dyles, equivalent to 134 N of anterior force applied at the tibial
tubercle, with the knee held at 30� of flexion and the remaining
DOF left unconstrained; anterior tibial translation was mea-
sured using the point defined by the bisection of the femoral
epicondyles42.

Fig. 3

Simple linear regressions relating the sagittal slope differential of the medial and lateral tibial compartments to internal tibial rotation. Relationships are

shown for the ACL-intact and ACL-sectioned knees. Kinematics reflect changes between a minimally loaded state (10 N) and 300 N compression at 15� of
flexion. The 95% confidence intervals of the regression coefficients (b) are in parentheses. P < 0.05 is significant.

Fig. 4

Simple linear regressions relating volume of the anteromedial aspect of the medial tibial eminence to anterior translation (trans.) of the medial tibial

compartment. Relationships are shown for ACL-intact and ACL-sectioned knees. Kinematics reflect changes between a minimally loaded state (10 N) and

300 N compression at 15� of flexion. The 95% confidence intervals of the regression coefficients (b) are in parentheses. P < 0.05 is significant.
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Outcome measures were the changes in anterior tibial
translation and internal tibial rotation caused by increasing
tibiofemoral compression from 10 to 300 N in the ACL-intact
and ACL-sectioned conditions. Each outcome was summa-
rized using means, standard deviations, and 95% confidence
intervals (CIs). Simple and multiple linear regressions with
stepwise selection were performed to identify correlations
between the kinematic outcome measures and (1) osseous
geometric parameters (sagittal slope measurements [�], slope
differential [�], and medial tibial eminence volume [mm3]) and
(2) anterior laxity (mm). Regression coefficients, 95% CIs, and
the adjusted coefficients of determination (adj. r2) were re-
ported. The normality of each measure was confirmed using
Shapiro-Wilk tests (p > 0.05). The level of significance was set at
p < 0.05.

Results

With the ACL intact, the mean anterior tibial translation
of the medial compartment and of the lateral com-

partment was 21.6 ± 3.1 and 3.4 ± 5.3 mm, respectively.
With the ACL sectioned, the mean anterior tibial translation
of the medial and of the lateral compartment was20.7 ± 4.8
and 6.4 ± 8.9 mm, respectively. The mean internal tibial
rotation in the ACL-intact and ACL-sectioned knees was
3.9� ± 5.4� and 5.4� ± 8.5�, respectively.

In the ACL-intact condition, the sagittal slope of both
compartments was correlated with tibiofemoral kinematics
under applied compression (Table I). Specifically, the ante-
rior tibial translation of each compartment in response to
axial loading was correlated with the corresponding sagittal
slope (b = 0.82, p = 0.007 for the medial compartment; and
b = 1.47, p = 0.011 for the lateral compartment) (Fig. 2) and
sagittal slope differential (b = 20.53, p = 0.033 for the

medial compartment; and b = 0.98, p = 0.022 for the lateral
compartment). Internal tibial rotation after axial loading
was correlated with the lateral sagittal slope (b = 1.25, p =
0.044) and the sagittal slope differential (b = 1.19, p = 0.003)
(Fig. 3).

In the ACL-sectioned condition, sagittal slope was less
predictive of tibiofemoral kinematics under applied compression
(Fig. 2). Instead, the volume of the medial tibial eminence and
anterior laxity during simulated Lachman tests were more related
to knee kinematics (Fig. 4, Table II). Anterior tibial translation of
the medial compartment was correlated with the medial sagittal
slope (b = 1.01, p = 0.049) (Fig. 2) and medial tibial eminence
volume (b = 20.03, p = 0.034) (Fig. 4). Internal tibial rotation
was inversely correlated with anterior laxity measured during a
simulated Lachman test (b = 21.96, p = 0.026). Both medial
tibial eminence volume and anterior laxity demonstrated corre-
lations with anterior tibial translation of themedial compartment
in a multiple linear regression model (for medial tibial eminence
volume, b = 20.04 [95% CI = 20.07 to20.01], p = 0.004; and
for anterior laxity, b = 1.02 [95% CI = 0.29 to 1.75], p = 0.012).

Discussion

Risk factors for ACL injury distinctly influence tibiofemoral
kinematics under compressive loading. With the ACL

intact, the sagittal slope of the medial and lateral tibial plateaus
was predictive of the respective anterior tibial translation of
each compartment. Additionally, the lateral sagittal slope and
the difference between compartments in sagittal slope pri-
marily predicted internal tibial rotation. After sectioning the
ACL, other anatomical factors emerged as predictive of tibio-
femoral kinematics under compressive loading, namely, the
volume of the medial tibial eminence and anterior laxity during
a simulated Lachman test.

TABLE II Correlations Between Kinematics and Anatomical Factors in ACL-Sectioned Knees*

Kinematics Anatomical Factor b 95% CI Adj. R2 P Value

Medial compartment ATT Medial sagittal slope 1.01 0.09, 2.01 0.25 0.049

Lateral sagittal slope 20.25 21.52, 1.02 20.07 0.673

Sagittal slope differential 20.73 21.56, 0.10 0.20 0.069

Medial tibial eminence volume 20.03 20.06, 20.01 0.29 0.034

Anterior laxity 0.82 20.23, 1.87 0.14 0.117

Lateral compartment ATT Medial sagittal slope 0.37 21.84, 2.58 20.08 0.726

Lateral sagittal slope 2.00 0.00, 3.99 0.24 0.052

Sagittal slope differential 0.81 20.81, 2.43 0.02 0.300

Medial tibial eminence volume 0.01 20.06, 0.08 20.08 0.736

Anterior laxity 21.83 23.67, 0.01 0.24 0.052

Internal tibial rotation Medial sagittal slope 20.38 22.49, 1.73 20.08 0.703

Lateral sagittal slope 1.72 20.25, 3.69 0.18 0.086

Sagittal slope differential 1.11 20.35, 2.57 0.13 0.128

Medial tibial eminence volume 0.03 20.04, 0.10 0.03 0.260

Anterior laxity 21.96 23.62, 20.30 0.32 0.026

*ACL = anterior cruciate ligament, and ATT = anterior tibial translation.
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Although numerous clinical studies have shown tibial
slope to be a risk factor for ACL injury10-14,37, our study presents
important biomechanical data linking greater slope to in-
creased compartmental anterior tibial translation with
compressive loads10,21,22,37. Since compression is known to
elevate anterior tibial translation and ACL force, even to the
point of failure29-31, our findings further support the biome-
chanical role that greater tibial slope plays in elevating the
risk of ACL injury10,23,24,38. By independently measuring the
sagittal slope of the medial and lateral tibial plateaus, our
study clarifies how lateral tibial slope and slope differential
contribute to internal tibial rotation with compression when
the ACL is intact. This finding supports the conjecture of
Simon et al. and others31,38,49 that increased lateral slope leads
to greater lateral compartment translation and internal tib-
ial rotation, potentially imparting higher forces on the ACL
and increasing the risk of ACL injury12,50,51. In the current
study, in ACL-intact knees, for every 1� increase in posterior-
inferior directed slope, the anterior tibial translation of the
lateral compartment was 1.8-times larger, on average, than
that of the medial compartment (b = 1.47 mm/� for the
lateral compartment, and b = 0.82 mm/� for the medial
compartment) (Fig. 2). Thus, medial compartment transla-
tion during compression was less sensitive to changes in slope
than the lateral compartment, likely due to medial tibial
concavity, ligamentous and meniscal restraints, and the
larger medial femoral condyle34,52. These factors constrain the
medial side, facilitating pivoting of the lateral compartment
around the medial compartment, leading to internal tibial
rotation.

Additionally, this study demonstrated that, in ACL-
intact knees, the difference in sagittal slope of the medial and
lateral compartments provided a more precise prediction of
internal tibial rotation than the slope of the lateral compart-
ment alone, as indicated by the narrower CIs of the regression
coefficients (Table I). Interestingly, Kolbe et al.15 reported
that, among patients with ACL injuries, those who had greater
lateral slope and greater lateral-medial slope asymmetry were
at greater risk for a concomitant posterolateral meniscal root
tear. This finding may be explained by increased shear forces
from increased internal tibial rotation. Because the tibial slope
is often measured on a single projection on a lateral radio-
graph, the sagittal slope differential is rarely considered53,54.
The difference between lateral and medial sagittal slope, in
addition to lateral compartment slope, may be another impor-
tant predictor of ACL injury and should be examined further in
clinical studies.

In the ACL-sectioned state, the relationships between
sagittal slope and anteroposterior compartment translations
were less precise compared with those of the intact knee, as
indicated by the wider CIs of the regression coefficients (Table
II). Rather, the combination of medial tibial eminence volume
and anterior knee laxity emerged as more predictive of tibio-
femoral kinematics with compression. Specifically, a 100-mm3

decrease of the medial eminence volume (approximately the
volume of the head of a cotton swab) was predictive of a 3-to-4-

mm increase in anterior tibial translation of the medial com-
partment. This finding suggests that contact between the tibial
eminence and the femoral notch may play an important role in
transmitting forces across the tibiofemoral joint; a larger
medial tibial eminence may shield the ACL from injurious
loads and a risk of injury16,47. After ACL rupture, a larger medial
tibial eminence may abut the femoral notch and prevent excess
anterior tibial translation40. This supposition is supported by
radiographic observations of peaking of the medial tibial
eminence and narrowing of the intercondylar notch in knees
with ACL insufficiency55-57. Volume, however, does not reveal
the specific portions of the tibial eminence that may engage
the notch; a more in-depth study of the contact mechanics
between the eminence and notch would further clarify the
contribution of this phenomenon to knee stability. Moreover,
decreased anterior laxity in the ACL-deficient knee may restrict
motion of the medial compartment during axial loading58,
thereby increasing internal tibial rotation, as demonstrated in
our work.

Our findings suggest that preoperative measurements
of posterior tibial slopes (medial and lateral) and tibial em-
inence volume from magnetic resonance imaging (MRI)16

or CT could be adapted to clinical use. It remains to be
seen, however, if tibial eminence volume quantified via
clinical MRI agrees with calculations from CT. Similarly,
preoperative measurement of anterior laxity via a Lachman
examination or KT-1000 arthrometer (MedMetric) could be
adapted clinically59. Specifically, clinicians may use these
measures to predict knee stability under compression after
ACL injury and personalize treatments accordingly. For
example, patients with ACL deficiency and increased posterior-
inferior directed tibial slope measurements and increased
slope differential, smaller medial tibial eminence volume,
and increased anterior laxity may experience increased
compartmental translations and internal tibial rotation, re-
sulting in increased symptomatic instability, during weight-
bearing. These increased motions may also lead to increased
shear loading and damage to the cartilage and menisci15.
Furthermore, we theorize that, after ACL reconstruction,
increased tibial slope differential may subject the ACL
graft to increased strain with weight-bearing. We speculate
that additional measures, such as lateral extra-articular
augmentation, a concurrent closing-wedge proximal tibial
osteotomy, or limiting full weight-bearing in the early postop-
erative period, may be warranted in this subgroup of patients. In
contrast, ACL-injured individuals with less posterior-inferior
directed tibial slope, larger medial tibial eminence volume, and
less anterior laxity may exhibit less motion and be more stable;
nonoperative treatment in these patients may be an option.
These suppositions, of course, require further preclinical and
clinical testing.

This study had several limitations. First, we applied less
compressive load than what is experienced during daily
activities such as walking (>1 kN)45,60,61. We compressed a
subset of 5 of the specimens to 600 N; translations and rota-
tions changed minimally (<0.7 ± 0.7 mm and <0.75� ± 0.4�)
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beyond 300-N compression with the ACL sectioned. With
the ACL intact, continuing from 300 to 600 N yielded
additional tibiofemoral motion (<2.9 ± 2.0 mm and <3.3� ±
2.4�), but the variability in kinematics among specimens at
300 N was adequate to begin to assess relationships with
subchondral geometry and anterior laxity, indicating that
these relationships may be elicited even with partial weight-
bearing. Muscle forces, which influence kinematics24,33,62,
were excluded to isolate the effect of osseous geometry and
laxity. Other anatomical characteristics (e.g., femoral osse-
ous shapes, chondral surface morphology) that may predict
weight-bearing kinematics as well as lesions that often occur
concomitantly with ACL rupture (e.g., meniscal tears, other
ligamentous injury) were not accounted for28,62,63. The same
loading conditions were applied to each cadaveric knee,
regardless of specimen size or donor body weight, which
may have contributed to larger CIs. Since relationships
emerged in this study utilizing a small sample size and
without normalization of the data, additional studies with a
larger sample size enabling multiple linear regression are
warranted.

In conclusion, with the ACL intact, tibial sagittal slopes
were predictive of tibiofemoral kinematics under compressive
loading, while medial tibial eminence volume and anterior
laxity emerged as predictive of kinematics with the ACL sec-
tioned. Clinical confirmation of our findings is necessary to
determine whether these relationships predict stability,
function, and injury patterns after ACL rupture and whether
they can be used to personalize ACL reconstruction surgery to
improve outcomes.
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